skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hurwitz, Shaul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chemical changes in hot springs, as recorded by thermal waters and their deposits, provide a window into the evolution of the postglacial hydrothermal system of the Yellowstone Plateau Volcanic Field. Today, most hydrothermal travertine forms to the north and south of the ca. 631 ka Yellowstone caldera where groundwater flow through subsurface sedimentary rocks leads to calcite saturation at hot springs. In contrast, low-Ca rhyolites dominate the subsurface within the Yellowstone caldera, resulting in thermal waters that rarely deposit travertine. We investigated the timing and origin of five small travertine deposits in the Upper and Lower Geyser Basins to understand the conditions that allowed for travertine deposition. New 230Th-U dating, oxygen (δ18O), carbon (δ13C), and strontium (87Sr/86Sr) isotopic ratios, and elemental concentrations indicate that travertine deposits within the Yellowstone caldera formed during three main episodes that correspond broadly with known periods of wet climate: 13.9−13.6 ka, 12.2−9.5 ka, and 5.2−2.9 ka. Travertine deposition occurred in response to the influx of large volumes of cold meteoric water, which increased the rate of chemical weathering of surficial sediments and recharge into the hydrothermal system. The small volume of intracaldera travertine does not support a massive postglacial surge of CO2 within the Yellowstone caldera, nor was magmatic CO2 the catalyst for postglacial travertine deposition. 
    more » « less
  2. Aside from captivating our senses, geysers have much to tell us about subsurface fluids, climate change effects, and the occurrence and limits of life on Earth and elsewhere in the solar system. 
    more » « less
  3. null (Ed.)
  4. Abstract In the past century, most eruptions of Steamboat Geyser in Yellowstone National Park's Norris Geyser Basin were mainly clustered in three episodes: 1961–1969, 1982–1984, and ongoing since 2018. These eruptive episodes resulted in extensive disturbance to surrounding trees. To characterize tree response over time as an indicator of geyser activity adjustments to climate variability, aerial and ground images were analyzed to document changes in tree coverage around the geyser since 1954. Radiocarbon dating of silicified tree remnants from within 14 m of the geyser vent was used to examine geyser response to possible variations in decadal to centennial precipitation patterns. We searched for atypical or absent growth rings in cores from live trees in years associated with large geyser eruptions. Photographs indicate that active eruptive phases have adversely affected trees up to 30 m from the vent, primarily in the dominant downwind direction. Radiocarbon dates indicate that the geyser formed before 1878, in contrast to the birthdate reported in historical documents. Further, the ages of the silicified trees cluster within three episodes that are temporally correlated with periods of relative drought in the Yellowstone region during the 15th–17th centuries. The discontinuous growth of trees around the geyser suggests that changes in eruptive patterns occur in response to decadal to multidecadal droughts. This inference is supported by the lack of silicified specimens with more than 20 annual rings and by the existence of atypical or missing rings in live trees during periods of extended geyser activity. 
    more » « less
  5. null (Ed.)
    Steamboat Geyser in Yellowstone National Park’s Norris Geyser Basin began a prolific sequence of eruptions in March 2018 after 34 y of sporadic activity. We analyze a wide range of datasets to explore triggering mechanisms for Steamboat’s reactivation and controls on eruption intervals and height. Prior to Steamboat’s renewed activity, Norris Geyser Basin experienced uplift, a slight increase in radiant temperature, and increased regional seismicity, which may indicate that magmatic processes promoted reactivation. However, because the geothermal reservoir temperature did not change, no other dormant geysers became active, and previous periods with greater seismic moment release did not reawaken Steamboat, the reason for reactivation remains ambiguous. Eruption intervals since 2018 (3.16 to 35.45 d) modulate seasonally, with shorter intervals in the summer. Abnormally long intervals coincide with weakening of a shallow seismic source in the geyser basin’s hydrothermal system. We find no relation between interval and erupted volume, implying unsteady heat and mass discharge. Finally, using data from geysers worldwide, we find a correlation between eruption height and inferred depth to the shallow reservoir supplying water to eruptions. Steamboat is taller because water is stored deeper there than at other geysers, and, hence, more energy is available to power the eruptions. 
    more » « less
  6. Abstract Geysers are rare geologic features that intermittently discharge liquid water and steam driven by heating and decompression boiling. The cause of variability in eruptive styles and the associated seismic signals are not well understood. Data collected from five broadband seismometers at Lone Star Geyser, Yellowstone National Park are used to determine the properties, location, and temporal patterns of hydrothermal tremor. The tremor is harmonic at some stages of the eruption cycle and is caused by near‐periodic repetition of discrete seismic events. Using the polarization of ground motion, we identify the location of tremor sources throughout several eruption cycles. During preplay episodes (smaller eruptions preceding the more vigorous major eruption), tremor occurs at depths of 7–10 m and is laterally offset from the geyser's cone by ~5 m. At the onset of the main eruption, tremor sources migrate laterally and become shallower. As the eruption progresses, tremor sources migrate along the same path but in the opposite direction, ending where preplay tremor originates. The upward and then downward migration of tremor sources during eruptions are consistent with warming of the conduit followed by evacuation of water during the main eruption. We identify systematic relations among the two types of preplays, discharge, and the main eruption. A point‐source moment tensor fit to low‐frequency waveforms of an individual tremor event using half‐space velocity models indicates averageVS ≳ 0.8 km/s, source depths ~4–20 m, and moment tensors with primarily positive isotropic and compensated linear vector dipole moments. 
    more » « less